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Abstract. Within the framework of a simple model, we study single-spin asymmetries for pion production
in hadron–hadron collisions at high energies with one hadron polarized. The asymmetries are generated via
a mechanism of final- (initial-) state interactions. For peripheral kinematics, we find nonzero asymmetries at
the high-energy limit when the pion belongs to the fragmentation region of the polarized proton. Numerical
results and comparison with existing experimental data are presented. We also discuss the relationship with
Odderon exchange phenomenology.

1 Introduction

Single-spin correlations have been the subject of theo-
retical [1–15] and experimental [16–20] study since the
seventies. Earlier theoretical work paid attention mainly
to time-reversal invariance violation in hadron-scattering
processes. No such effect was found, whereas C-odd single-
spin correlation asymmetries were observed at the level of
∼10% in SLAC experiments, in which 10–12 GeV elec-
trons and positrons were scattered off polarized protons
(with large error bars, however), and later in Fermilab
experiments at higher energies. The capabilities of mod-
ern CERN and DESY experiments permit the reduction of
these errors because of much improved statistics. We argue
here that at small momentum transfer, large effects may
be understood in the framework of Pomeron and Odderon
exchange models and may thus provide an independent
method of studying the characteristics of such exchanges
in high-energy peripheral hadron scattering.

The appearance of single-spin correlations and associ-
ated asymmetries in differential cross sections is due to
a quantum effect of interference between real and imag-
inary parts of different amplitudes. In phenomenological
approaches, the amplitudes have been used in a Breit–
Wigner form, and the asymmetries turn out to be propor-
tional to the width-to-mass ratio of the resonance [4,5].
For the case of polarized proton–proton collisions, with
the production of pions through some intermediate nu-
cleon resonance state in peripheral kinematics (PK), the
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asymmetry may be as large as 20–40% [6]. Another mech-
anism for the generation of imaginary parts in scattering
amplitudes is due to initial- or final-state interactions. In
lowest-order perturbation theory, such contributions can
arise from the interference between the Born amplitude
and one-loop amplitudes with a nonzero s-channel imagi-
nary part [1].

A similar phenomenon has been found for the case of
large-angle production: for the kinematics of large pT and
large xF of the detected hadron, single-spin asymmetries
are generated by twist-3 parton correlation functions con-
structed from quark and gluon fields. For this case, the
theoretical approach within the framework of perturba-
tive QCD has been discussed recently by several authors
[2,3,7,12,15].

Here we consider peripheral kinematics: The unpolar-
ized proton produces a jet moving along the initial direc-
tion of motion, which is then not detected, whereas the
jet produced by the polarized proton contains a detected
pion. The asymmetry originates from a term iεp1p2la =
(i/2)s[l ∧ a]z, where p1 and p2 are the 4-momenta of the
initial protons, l is the momentum of the pion in the
center-of mass-system (CMS) and a is the spin 4-vector
of the proton with momentum p2, which is essentially a
2-component vector located in the plane transverse to the
beam axis (the z direction of the initial-state proton with
momentum p1), and s = 4E2 is the square of the total
CMS energy.

For high enough energies, the description in terms of
Regge trajectories is more convenient, because for small
enough momentum transfer, the contribution of opera-
tors of all twists will be of the same order of magnitude.
Here the even (spin-independent) part of the differential
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cross section is determined by Pomeron exchange, whereas
the spin-dependent part, arising from interference between
one- and two-gluon exchange amplitudes, should be de-
scribed by the Odderon trajectory. Note that quark ex-
change in the t-channel only gives a small contribution,
suppressed by a factor of m2/s, where m is the proton
mass. Thus, the study of single-spin asymmetries in PK
may provide information on the Odderon intercept. In
this paper, using a QED-like framework with point-like
hadrons, we calculate the asymmetry, defined as follows:

A =
dσ(a, l) − dσ(−a, l)
dσ(a, l) + dσ(−a, l)

= αQED
(a ∧ l)z

m
A(r, x), (1)

in which αQED = 1/137 is the QED coupling constant,
and the resolving power, A(r, x), is a function of r = l⊥/m
(the transverse momentum of pion in units of the proton
mass, m) and x = 2l0/

√
s (its energy fraction, x ∼ O(1)).

We shall show that A(r, x) is a smooth rising function of
x of order unity. Thus, naively replacing the QED cou-
pling constant by that of QCD or by that of the Pomeron
or Odderon coupling with the proton, we find that the
asymmetry may be large for large enough values of l⊥;
this is in qualitative agreement with experimental data
[16–18,20].

We should recall before proceeding that although the
diagrams considered (see Fig. 1) would be excluded by
naive color conservation in purely perturbative QCD, they
represent precisely the two-gluon exchange topology gen-
erally held responsible for the Pomeron contribution, e.g.,
to the total cross section [21,22].

The paper is organized as follows. In Sect. 2, we cal-
culate the expressions for the squared matrix elements
summed over spin states for processes of neutral- and
charged-pion production in the framework of our QED-
like approach. The corresponding charge-odd interferences
for these channels are considered in Sect. 3, in which we
first obtain the expressions for asymmetries in an exclusive
setup (when both the nucleon and pion from the jet de-
veloping along the direction of polarized proton are fixed
in the experiment); we then estimate the ratio of odd and
even parts of the cross section averaged over final pro-
ton momenta. In the conclusion, we discuss the situation
in which a hadron is detected in the opposite direction,
and we also discuss the role of higher-order perturbation
theory contributions and their relationship to Odderon ex-
change.

2 Calculation of the cross section

Consider first the process

P (p1) + P (p2) → P (p′
1) + P (p′

2) + π0(l), (2)

for which the relevant Born-approximation diagrams are
shown in Fig. 1. We use the Sudakov expansion for the

momenta of the problem, introducing the almost light-like
vectors

p̃µ
1 = pµ

1 − m2

s
pµ
2 ,

p̃µ
2 = pµ

2 − m2

s
pµ
1 . (3)

With these we define the following parametrization of
the momenta in the problem:

qµ = pµ
1 − p

′µ
1 = αp̃µ

2 + βp̃µ
1 + qµ

⊥,

p
′µ
2 = (1 − x)p̃µ

2 + β′p̃µ
1 + pµ

⊥,

lµ = xp̃µ
2 + βlp̃

µ
1 + lµ⊥,

qµ
⊥ = pµ

⊥ + lµ⊥. (4)

The transverse parts, v⊥, obey

v⊥·p1 = 0 = v⊥·p2,

v2
⊥ = −v2 < 0. (5)

We have also used the specific properties of PK: The sum
of pion and proton energy fractions from the jet moving
along initial polarized proton is equal to unity, x ∼ O(1);
moreover, the reality conditions for final particles permit
the neglect of the “small” components of the momenta:

sβ′ =
m2 + p2

2

1 − x
, (6)

sβl =
l2

x
. (7)

Here and in what follows, we neglect the pion mass
squared compared to that of the proton. The intermediate
fermion denominators in the Born graphs (see Fig. 1) are
then given by

d1 = k2
1 − m2 ' m2x2 + (xq − l)2

x(1 − x)
, (8)

d2 = k2
2 − m2 ' −m2x2 + l2

x
. (9)

Note that k2
1 is just the invariant mass squared of the

jet moving along p2. We shall show that the dominant
contribution arises when this quantity is of the order of
some nucleon mass squared.

In the Born approximation, the matrix element has the
following form:

Mπ0 =
4παg

q2 J (1)
µ (p1)Dµν(q)J (2)

ν (p2), (10)

where α = αQED, g is the pion–nucleon coupling constant
and Dµν is the exchange photon polarization tensor. The
current vectors introduced are

J (1)
µ (p1) = ū(p′

1)γµu(p1),

J (2)
ν (p2) = ū(p′

2)Oνu(p2), (11)
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Fig. 1. The amplitudes for the process pp → ppπ in
the Born approximation; the proton with momen-
tum p2 is polarized

where

Oν =
1
d1

γ5(6p′
2 + 6 l + m)γν +

1
d2

γν(6p2 − 6 l + m)γ5

= γ5

[ 6 lγν

d1
− γν 6 l

d2

]
. (12)

In the last step of (12), we have used the Dirac equation
for free protons. For PK, only the so-called nonsense com-
ponents of the decomposition of the photon polarization
tensor give a nonvanishing contribution in the high-energy
limit:

Dµν = gµν
⊥ + 2(pµ

1pν
2 + pν

1pµ
2 )/s

' 2pν
1pµ

2/s. (13)

Further simplifications may be made by the use of the
current conservation condition, q·J (2) = 0, which implies
p1·J (2) ' −q⊥·J (2)/β.

As a result, the matrix element in the Born approxi-
mation becomes

Mπ0 = −8παg

βsq2 ū(p′
1)6p2u(p1) ū(p′

2)Ou(p2), (14)

where O = qν
⊥Oν . Here the exchange denominator is q2 =

−(q2+q2
m), with q2

m = m2(s̃/s)2 and s̃ = (m2x+p2
2)/(1−

x)+ l2/x. However, in order to regulate the infrared diver-
gences, we shall use a massive vector-particle propagator:
q2 = −(q2 + µ2). For the modulus squared of the Born
matrix element, summed over spin states, we thus obtain

∑
spins

|Mπ0 |2 = (16πgα)2
s2x2q2

d1(−d2)(q2 + µ2)2
. (15)

Note that here we consider the hadrons as point-like
particles, and so the high-frequency contributions are not
negligible (unrealistically so). Thus, although all integrals
are in fact convergent, we now introduce a form factor
of the form exp(−q2/q2

c ), with qc ∼ 1 GeV, the effect of
varying qc will be shown later.

As is well known, single-spin correlation effects are ab-
sent in the Born approximation, as a consequence of the
reality of Born amplitudes and the form of the proton
spin-density matrix:

u(p2, a) ū(p2, a) = (6p2 + m)(1 + γ5 6a),

tr[γ5 6a6b 6c6d] = 4iεabcd. (16)

Fig. 2. An example higher-order contribution to the process
pp → ppπ, as considered in the text

It is also well known that in the case of elastic small-angle
charged-particle scattering, the Born amplitude acquires
a Coulomb phase factor, exp[iαπ ln(−q2/µ2)], when mul-
tiphoton exchange is taken into account. A similar factor
appears in the case of inelastic processes in PK, such as
those we are considering here.

3 Calculation of the spin dependence

For the spin-dependent part of the interference between
single- and double-photon exchange amplitudes
(see Fig. 2), a calculation similar to that performed above
gives

∑
spins

∆|Mπ0 |2 =
211π2α3g2s

s̃2|q|4 ln
( |q|2

µ2

)

× i
4
tr[−γ5 6aÕ(6p′

2 + m)O(6p′
2 + m)6p1(6p2 + m)], (17)

in which again, O = qν
⊥Oν . After calculating the trace we

obtain, for the exclusive setup,

A =
∆

∑ |Mπ0 |2∑ |Mπ0 |2
= 4α ln(q2/µ2)m|a||q| sinφq

× [xs̃ − 2q · l][xq2 + (1 − x)2q · l]
s̃ d2 q2 , (18)

where φq is the azimuthal angle between the transverse
2-vectors a and q. We note that the asymmetry is finite
in the small-q limit.

The differential cross section in the Born approxima-
tion is

dσB

dxdr
=

2αQEDαppπ

m2

r

x(1 + ρ)2

[
ln

(1 + ρ)2

σ
− 1

]
, (19)
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where αppπ = g2/(4π) ≈ 3, ρ = r2/x2 and σ = (µ2 +
q2
m)/M2. The Born cross section is a monotonically rising

function of x (∼x3) for small x. It falls rapidly as 1/l3 for
large pion transverse momentum l and reaches the max-
imum value for l⊥ ∼ mx/

√
3. The asymmetry in the in-

clusive setup, defined as a ratio of even and odd parts of
the cross section averaged over transverse momenta, may
be written, for small σ, in the form:

A =
∫

d2q
∑

∆|M |2∫
d2q

∑ |M |2

= |a| sinφl
4αQEDR

r
[
ln (1+ρ)2

σ − 1
] , (20)

with

R = x ln(1 + ρ) ln
1 + ρ

σ
+ x(1 − x)

×
[

ρ

2(1 + ρ)
ln2 σ + f1(ρ, x) lnσ + f2(ρ, x)

]
,(21)

in which f1,2 are rather flat functions; the complete ex-
pression for R is given in the appendix. The results of a
numerical calculation of the asymmetry in the inclusive
setup as a function of x for various values of the form-
factor cutoff qc and as a function of l for a various values
of the Feynman variable x are presented in Fig. 3. Note
that in Fig. 3a, the experimental values of l⊥ vary with
xF [17]; thus our theoretical curves are calculated for the
same set of values; the mean l⊥ varies between 0.4 and
1.2 GeV. While the detailed dependence on x and l⊥ is
not entirely reproduced, the general trends are seen to be
correct.

A similar calculation for the case of π+ production in
the small-q limit yields

x2
∑

|Mπ+ |2 = (1 − x)2
∑

|Mπ0 |2,
x2

∑
∆|Mπ+ |2 = (1 − x)2

∑
∆|Mπ0 |2, (22)

where
∑

∆|M|2 stands for the spin-weighted sum. Thus,
the asymmetries for π+ production roughly coincide with
those for the π0 case.

4 Conclusions

We see that asymmetry effects due to single transverse
polarization are not suppressed in the limit of large total
CMS energy

√
s, in the case in which the produced hadron

belongs to the jet of the polarized proton.
The overall normalization depends on the detailed

mechanism of vector-meson (photon, Pomeron or gluon)
interaction with nucleons and is bound to the choice of
the parameters α and µ. In inclusive measurements, when
the momentum of the pion is measured and the jets es-
cape detection for relatively large t (but −t � s), the
interference between graphs with one and two exchange
gluons (in the same color state) will dominate. In the case

in which protons are in the final state, it is natural then to
interpret the exchange as a Pomeron (leading-order inter-
ference terms) or an Odderon (higher-order interference
terms). In both of these cases, the asymmetry is expected
to be of the same order and to have the same (qualita-
tive) dependence on xF and transverse momentum. How-
ever, the overall normalization factor will change, so we
consider it as a fitting parameter. Thus, the naive replace-
ments α → αs and µ → ΛQCD lead to asymmetries of the
same order as those found experimentally and which grow
with transverse momentum for small values.

Numerical analysis shows that the model constructed
agrees qualitatively with the existing data for π+ and π0

[17,18,16,20]. The overall normalization factor is ∼ 25–35,
which, when multiplied by a generalized coupling constant
equaling αQED, is equivalent to an overall normalization
factor of ∼0.3. The asymmetry for π− also can be consid-
ered within this scheme; however, 2 → 4 processes have to
be considered instead of 2 → 3. In this case, the role of in-
termediate ∆ resonances would also have to be evaluated
carefully. This subject, as well as a more exact description
of π+,0 cases, will be investigated elsewhere.

It should be noted that in the case in which the pion
is detected in the direction of the jet moving in the op-
posite direction (i.e., along p1) the asymmetry effect will
be suppressed in the s → ∞ limit. In fact, information on
the transverse polarization of proton p2 cannot be trans-
mitted to jet components developing from proton p1 un-
less at least one “sense” component of the virtual photon
polarization tensor is used, gµν

⊥ ; consequently, it will be
suppressed by powers of m2/s.1

In particular, for elastic proton–proton scattering,
when an unpolarized scattered proton with momentum
p′
1 is detected, we obtain:

Ap(p′
1) = α

5mq2(a ∧ q)z

2s2 . (23)

Higher-order QCD effects may be taken into account
by the introduction of a factor (s/s0)aO into the odd part
of the elastic proton–proton-scattering zero-angle ampli-
tude, where aO is the Odderon intercept. Thus, the asym-
metry considered here, associated with twice the imagi-
nary part, acquires a factor a2

O(s/s0)aO−aP , where aP is
the Pomeron intercept. Given that aO < aP, such a factor
will eventually suppress the asymmetry in the ultrahigh-
energy limit2. However, our interest lies in the lower-
energy region, accessible experimentally at present. More-
over, the lack of knowledge on the precise value of aO
leaves the entire question of asymptotics uncertain. Fi-
nally, we note that for small-angle scattering of electrons
off polarized protons, the Odderon contribution manifests
itself in higher orders of perturbation theory because of
the conversion of photons into gluons through the γγ → gg
and γg → gg kernels; this may also be investigated at
DESY.

1 We are grateful to Lev N. Lipatov for discussions on this
point.

2 We are grateful to Sergey Troshin for bringing this point
to our attention.
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Fig. 3. The model calculations for the asymmetry plotted as a function of a x (with l⊥ varying point-by-point as explained in
the text) for various values of the form-factor cutoff, qc, and b l⊥ for various values of x
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Appendix

After some simple operations, the odd part of the cross
section, averaged over q, may be put into the following
form: ∫

d2q
π

∑
∆|M |2

=
210(πg)2α3

QEDxs2

d2
2

|a| sinφl

r

×
∫

d2q
π

ln(q2/µ2)q · l
(q2 + µ2)2d1s̃

×[x2q2s̃ − 4(q · l)2 − 2xd2q · l], (24)

where we have used another equivalent form of the numer-
ator in (18):

[xs̃ − 2q · l] [xq2 + (1 − x)2q · l]
= x2q2s̃ − 4(q · l)2 − 2xd2q · l. (25)

We write the integrals of the three terms in square brack-
ets in (24) as J1,2,3, respectively. The quantity R intro-
duced in (21) may then be reexpressed in terms of the
Ji:

R =
∑3

i=1 Ji

x(1 − x)
. (26)

For the first term, we have

J1 = x(1 − x)
∫ d2q

π
q · l

ln(1/σ) + ln(q2/m2)
q2(q2 − 2q · l/x + (1 + ρ)m2)

, (27)

where ρ = l2/(m2x2). Using the Feynman trick of com-
bining the denominators, we adopt the following represen-
tation for the logarithm:

(
m2

q2

)
ln

(
q2

m2

)
= − d

dg

(
q2

m2

)−g
∣∣∣∣∣
g=1

.

The denominators may be combined by the use of the
identity

1
ugvh

=
Γ (g + h)
Γ (g)Γ (h)

∫ 1

0
dz

(1 − z)g−1zh−1

[(1 − z)u + zv]g+h
. (28)

The further standard procedure of performing the d2q in-
tegration and subsequent differentiation with respect to g
and integration over z yields

J1 = x2(1 − x) ln(1 + ρ) ln
1 + ρ

σ
. (29)

In the evaluation of J2, we may set σ = 0 in the de-
nominator. Joining the first two denominators, we have

1
d1s̃

=
(1 − x)2

x

∫ 1

0
dy [q2 −2q · lη

x
+ηm2(1+ρ)]−2, (30)

where η = x+y(1−x). Then, following a procedure similar
to that given above, we obtain

J2 = −4[x(1 − x)ρ]2
∫ 1

0
dy η

∫ 1

0
dz z2(1 − z)

×
[
ρη2z2

D3 (2L − 1) +
3L

2D2

]
, (31)

where L = ln(D/(1 − z)σ) and D = η(1 + ρ)z − η2z2ρ +
(1−z)σ. We note that we may set σ = 0 in the expression
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for D, although in evaluating J3, we cannot omit σ in the
denominator. Nevertheless, using the identity

ln
(

q2

σm2

)
= ln

(
q2/m2 + σ

σ

)
− ln

(
1 +

σm2

q2

)
, (32)

we may apply the procedure of differentiation to the first
term. The second is important in the region q2 ∼ σm2

and may be evaluated explicitly:

−2x2(1 + ρ)
∫

d2q
π

(q · l)2
ln(1 + σm2

q2 )

(q2/m2 + σ)2d1s̃

= −x2(1 − x)2ρ
1 + ρ

∫ ∞

0

dz z ln(1 + 1
z )

(1 + z)2

= −x2(1 − x)2ρ
1 + ρ

(
π2

6
− 1

)
. (33)

The total answer for J3 is then

J3 = −x2(1 − x)2ρ
1 + ρ

(
π2

6
− 1

)

+ 2x3(1 − x)2ρ(1 + ρ)
∫ 1

0
dy

∫ 1

0
dz z(1 − z)

×
[
ρz2η2(2L − 1)

D3 +
L

2D2

]
. (34)
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